数学解説
数学の解説記事です。出来る限り厳密に証明を書きます。目指せSelf Contained!
原始根やべき乗剰余についてDirichlet指標との関係を紹介します。応用として最小原始根問題について考えます。
原始根を用いた指数計算について紹介します。
Hardy-Littlewoodの円周法を学ぼう最終回です。前回導入した特異積分と特異級数について議論し、当初の目標であったWaringの問題に関する結果を証明して締めくくります。
Hardy-Littlewoodの円周法を学ぼう第三回です。今回はWaringの問題に関する特異級数と特異積分を導入し、Major arc上の積分の漸近評価を与えます。
Hardy-Littlewoodの円周法を学ぼう第二回です。今回はWaringの問題に関連するMajor arcとMinor arcを導入し、Minor arcにおける議論を学びます。
自然数をべき乗数の和に分割する方法を題材にHardy-Littlewoodの円周法を勉強します。この記事では円周法の根底のアイデアを紹介し、さらにHuaの補題を証明します。
指数和に関するWeylの不等式を証明します。Hardy-Littlewoodの円周法を通してWaringの問題やGoldbachの問題などに応用があります。